The hawkmoth wingbeat is not at resonance
Published in Biology Letters, 2022
Abstract
Flying insects have elastic materials within their exoskeletons that could reduce the energetic cost of flight if their wingbeat frequency is matched to a mechanical resonance frequency. Flapping at resonance may be essential across flying insects because of the power demands of small-scale flapping flight. However, building up large-amplitude resonant wingbeats over many wingstrokes may be detrimental for control if the total mechanical energy in the spring-wing system exceeds the per-cycle work capacity of the flight musculature. While the mechanics of the insect flight apparatus can behave as a resonant system, the question of whether insects flap their wings at their resonant frequency remains unanswered. Using previous measurements of body stiffness in the hawkmoth, Manduca sexta, we develop a mechanical model of spring-wing resonance with aerodynamic damping and characterize the hawkmoth’s resonant frequency. We find that the hawkmoth’s wingbeat frequency is approximately 80% above resonance and remains so when accounting for uncertainty in model parameters. In this regime, hawkmoths may still benefit from elastic energy exchange while enabling control of aerodynamic forces via frequency modulation. We conclude that, while insects use resonant mechanics, tuning wingbeats to a simple resonance peak is not a necessary feature for all centimetre-scale flapping flyers.
Citation:
Gau Jeff, Wold Ethan S., Lynch James, Gravish Nick and Sponberg Simon. 2022 The hawkmoth wingbeat is not at resonance. Biol. Lett. 18 20220063 20220063 http://doi.org/10.1098/rsbl.2022.0063